Extensions 1→N→G→Q→1 with N=C2 and Q=C23.63C23

Direct product G=N×Q with N=C2 and Q=C23.63C23
dρLabelID
C2×C23.63C23128C2xC2^3.63C2^3128,1020


Non-split extensions G=N.Q with N=C2 and Q=C23.63C23
extensionφ:Q→Aut NdρLabelID
C2.1(C23.63C23) = C24.624C23central extension (φ=1)128C2.1(C2^3.63C2^3)128,166
C2.2(C23.63C23) = C24.626C23central extension (φ=1)128C2.2(C2^3.63C2^3)128,168
C2.3(C23.63C23) = C4⋊C43C8central extension (φ=1)128C2.3(C2^3.63C2^3)128,648
C2.4(C23.63C23) = C24.631C23central stem extension (φ=1)128C2.4(C2^3.63C2^3)128,173
C2.5(C23.63C23) = C24.632C23central stem extension (φ=1)128C2.5(C2^3.63C2^3)128,174
C2.6(C23.63C23) = C24.633C23central stem extension (φ=1)128C2.6(C2^3.63C2^3)128,175
C2.7(C23.63C23) = C24.635C23central stem extension (φ=1)128C2.7(C2^3.63C2^3)128,177
C2.8(C23.63C23) = (C2×C8).Q8central stem extension (φ=1)128C2.8(C2^3.63C2^3)128,649
C2.9(C23.63C23) = C2.D84C4central stem extension (φ=1)128C2.9(C2^3.63C2^3)128,650
C2.10(C23.63C23) = C4.Q89C4central stem extension (φ=1)128C2.10(C2^3.63C2^3)128,651
C2.11(C23.63C23) = C4.Q810C4central stem extension (φ=1)128C2.11(C2^3.63C2^3)128,652
C2.12(C23.63C23) = C2.D85C4central stem extension (φ=1)128C2.12(C2^3.63C2^3)128,653
C2.13(C23.63C23) = M4(2).3Q8central stem extension (φ=1)32C2.13(C2^3.63C2^3)128,654

׿
×
𝔽